2^8/8^x=4^x

Simple and best practice solution for 2^8/8^x=4^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2^8/8^x=4^x equation:



2^8/8^x=4^x
We move all terms to the left:
2^8/8^x-(4^x)=0
Domain of the equation: 8^x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-4^x*8^x+2^8=0
We add all the numbers together, and all the variables
-4^x*8^x+256=0
Wy multiply elements
-32x^2+256=0
a = -32; b = 0; c = +256;
Δ = b2-4ac
Δ = 02-4·(-32)·256
Δ = 32768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32768}=\sqrt{16384*2}=\sqrt{16384}*\sqrt{2}=128\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-128\sqrt{2}}{2*-32}=\frac{0-128\sqrt{2}}{-64} =-\frac{128\sqrt{2}}{-64} =-\frac{2\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+128\sqrt{2}}{2*-32}=\frac{0+128\sqrt{2}}{-64} =\frac{128\sqrt{2}}{-64} =\frac{2\sqrt{2}}{-1} $

See similar equations:

| 3x^2-4x+2=6x-1 | | ((2k-8)2)+(k+2)2=4k | | 10v+8v=14 | | -5(x-2)=-2(2x-3)-x | | 11-6n=-37 | | 4x-36=-2 | | 3(x-20)-(x+5)=17 | | 1/2x+1=3/3x-8 | | 6(2)+(d+5)2=96 | | 10x+8x+11=0 | | 13x-7x=34 | | -4=1/3(6m-54) | | 4x-93=3.5x-9 | | -3(a-4)=9a-4 | | 2=n=16 | | 3x/7=8/15 | | -3+p-4=8-4 | | 4+x-2=6 | | 3+x-4=0 | | 2(s+9)-5s=90-12s | | 2(s+9)-5s=90-125 | | x-2+3=-7+2 | | 11^(x+3)=15^9x | | 22p+37=16p-17 | | 21+7v=20v-18 | | 81-6g=3g | | 14f=48+6f | | 5(z+6)+4z=75 | | 5+11y=8 | | 4c-c+7+8c=67 | | .20x+.25(70)=33.5 | | 4-c-7+8c=67 |

Equations solver categories